Breakthrough Technologies RNA Interference in the Moss Physcomitrella patens

نویسندگان

  • Magdalena Bezanilla
  • Aihong Pan
چکیده

The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP): -glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUSRNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA interference in the moss Physcomitrella patens.

The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from rela...

متن کامل

An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation.

Mitosis is a fundamental process of eukaryotic cell proliferation. However, the molecular mechanisms underlying mitosis remain poorly understood in plants partly because of the lack of an appropriate model cell system in which loss-of-function analyses can be easily combined with high-resolution microscopy. Here, we developed an inducible RNA interference (RNAi) system and three-dimensional tim...

متن کامل

Physcomitrella patens: mosses enter the genomic age.

The sequenced genome of the moss Physcomitrella patens provides a powerful tool for comparative analyses of land plant genomes. In parallel, several tools for studying gene function have been developed in P. patens, including RNA interference, inducible promoters and gene targeting, a unique attribute of this plant system. The results of these initiatives are now being realized. For example, tr...

متن کامل

Isolation and regeneration of protoplasts of the moss Physcomitrella patens.

This method is adapted from a protocol described by Grimsley et al. (1977). For more information about P. patens as a model organism, see The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies (Cove et al. 2009a). For details about the growth of P. patens on cellophane overlay plates, see Culturing the Moss Physcomitrella patens (Cove et al. 2009b). For p...

متن کامل

An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes.

RNAi is a powerful method for generating loss of function mutants, especially for targeting genes belonging to large gene families. We have recently shown that RNAi functions in the moss Physcomitrella patens. We obtained stable lines that show constitutive silencing of a nuclearly localized GFP:GUS fusion protein (NLS:GFP:GUS). However, lines that display silencing of the protein do not necess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003